Abstract

Magnesium oxysulfates (MOS), obtained by hydration of MgO in MgSO4 solution, are highly interesting as binders in lightweight building materials due to their environmental sustainability and promising technological properties. Recent focus has been concentrated on tailoring the phase composition towards 5Mg(OH)2·MgSO4·7H2O (517 phase) by using various additives (e.g. citric acid) that generally act as retarders of the direct hydration of Mg(OH)2, a competing phase in this system. In this work, macromolecules of vegetal origin were investigated as possible retarders to promote the crystallization of the 517 phase. Isothermal and semi-adiabatic hydration experiments were performed, together with thorough microstructural investigations of hardened cements by electron microscopy techniques (SEM, TEM) as well as X-ray powder diffraction and quantitative phase analyses by Rietveld refinements. The results show a temperature and time dependent retardant effect that is only effective in promoting the crystallization of the 517 phase at ambient temperature. Implications for the manufacturing of lightweight concrete are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.