Abstract

The sensitivity of some infrared bands to the local environment can be exploited to shed light on the structure and the dynamics of biological systems. In particular, the amide I band, which is specifically related to vibrations within the peptide bonds, can give information on the ternary structure of proteins, and can be used as a probe of energy transfer. In this work, we propose a model to quantitatively interpret the frequency shift on the amide I band of a model peptide induced by the formation of hydrogen bonds in the first solvation shell. This method allows us to analyze to what extent the electrostatic interaction, electronic polarization and charge transfer affect the position of the amide I band. The impact of the anharmoniticy of the pontential energy surface on the hydration induced shift is elucidated as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.