Abstract
Heat-lability is a key roadblock that strangles the widespread applications of many biological products. In nature, archaeal and extremophilic organisms utilize amorphous silica as a protective biomineral and exhibit considerable thermal tolerance. Here we present a bioinspired approach to generate thermostable virus by introducing an artificial hydrated silica exterior on individual virion. Similar to thermophiles, silicified viruses can survive longer at high temperature than their wild-type relatives. Virus inactivation assays showed that silica hydration exterior of the modified virus effectively prolonged infectivity of viruses by ∼ 10-fold at room temperature, achieving a similar result as that obtained by storing native ones at 4 °C. Mechanistic studies indicate that amorphous silica nanoclusters stabilize the inner virion structure by forming a layer that restricts molecular mobility, acting as physiochemical nanoanchors. Notably, we further evaluate the potential application of this biomimetic strategy in stabilizing clinically approved vaccine, and the silicified polio vaccine that can retain 90% potency after the storage at room temperature for 35 days was generated by this biosilicification approach and validated with in vivo experiments. This approach not only biomimetically connects inorganic material and living virus but also provides an innovative resolution to improve the thermal stability of biological agents using nanomaterials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.