Abstract

Methane hydrate formation is analytically studied in the presence of the water memory effect using the classical nucleation theory. The memory effect is introduced as a change in nucleation site from a three-dimensional heterogenous nucleation on a solid surface with cap-shaped hydrate clusters (3D-HEN) to a two-dimensional nucleation on the solid hydrate residue surface with monolayer disk-shaped hydrate clusters (2D-NOH). The analysis on the stationary nucleation of methane hydrate under isobaric conditions shows that the memory effect caused an average decrease of 4.4 K in metastable zone width, or subcooling. This decrease can be erased at higher dissociation temperatures (ΔT > 17.2 K) due to a decrease in the concentration of 2D-NOH nucleation sites. Moreover, the probability of hydrate formation is estimated for the purpose of quantifying risk associated with methane hydrate formation in the presence of the memory effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.