Abstract

Three-dimensional tissue organization is still an obstacle in the field of tissue engineering, which generally involves cell immobilization, proliferation, and organization. As an artificial extracellular matrix (ECM) for providing a suitable environment of cells to construct tissues, combination of cytocompatible polymer hydrogels and natural ECM produced by the immobilized cells was considered. In this research, we designed a spontaneously forming hydrogel system between two water-soluble polymers for the immobilization of cells. These polymers were poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate-co-p-vinylphenylboronic acid-co-N-succinimidyloxycarbonyl tetra(ethylene glycol)methacrylate) (PMBVS) and poly(vinyl alcohol) (PVA) to form a PMBVS/PVA hydrogel in a cell culture medium under mild conditions. Basic fibroblast growth factor (bFGF) was conjugated with PMBVS (PMBV-bFGF). To enhance the growth of the immobilized cells, mouse fibroblast L929 cells were immobilized in the PMBVS/PVA hydrogel and the PMBV-bFGF/PVA hydrogel, and their proliferation and secretion of the ECM under stimulation with bFGF was observed. The ECM infiltrated and replaced the hydrogel, resulting in the formation of a hybrid hydrogel with the ECM and laden cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.