Abstract

Genetic Algorithms are non-deterministic, stochastic-search adaptive methods which use the theories of natural evolution and selection in order to solve a problem within a complex range of possible solutions. The aim is to control the distribution of the search space by incorporating an exhaustive method in order to maintain a constant evolution of the population. The main goal is that of redesigning the algorithm in order to add to the classic genetic algorithm method those characteristics which favour exhaustive search methods. The method explained guarantees the achievement of reasonably satisfactory solutions in short time-spans and in a deterministic way, which entails that successive repetitions of the algorithm will achieve the same solutions in almost constant time-spans. We are, therefore, dealing with an evolutionary technique which makes the most of the characteristics of genetic algorithms and exhaustive methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.