Abstract

This paper proposes a novel three-phase transformer-based multilevel inverter (MLI) topology to maximize the output voltage levels for high-power high-voltage applications while reducing component counts as compared to its transformer-based counterparts. The proposed hybrid topology is formed by connecting a three-level T-type module with full H-bridge cells through single-phase transformers. The T-type module is fixed while the full H-bridge cell can be repeated for enlarging the output voltage levels without increasing the voltage stress on switches. Key features of the proposed topology include low part count, capacitor-free, diode-free, voltage boosting, simple control, and modularity. Within the framework, a simple low-frequency pulse width modulation (LFPWM) switching scheme is used to control the output voltage, and the working principle is detailed for seven-, nine-, and N-level operation. The operability and performance of the proposed topology are numerically verified and experimentally validated at different loads. Moreover, its conversion efficiency is experimentally examined. Finally, a comparative study with existing transformer-based MLI circuits is conducted to prove its key merits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.