Abstract

We consider the problem of scheduling a number of jobs on a number of unrelated parallel machines in order to minimize the makespan. We develop three heuristic approaches, i.e., a genetic algorithm, a tabu search algorithm and a hybridization of these heuristics with a truncated branch-and-bound procedure. This hybridization is made in order to accelerate the search process to near-optimal solutions. The branch-and-bound procedure will check whether the solutions obtained by the meta-heuristics can be scheduled within a tight upper bound. We compare the performances of these heuristics on a standard dataset available in the literature. Moreover, the influence of the different heuristic parameters is examined as well. The computational experiments reveal that the hybrid heuristics are able to compete with the best known results from the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.