Abstract

In this work, we design and synthesize a hybrid structure consisting of Sn-incorporated Cu3SbSe4 and a second phase CuSe, that is, (Cu3Sb1 − xSnxSe4)(CuSe)y (x = 0–0.04, y = 0.3–0.08), and explore the role of each phase on the improvement of the thermoelectric (TE) performance. In the Cu3Sb1 − xSnxSe4 phase, the element Sn residing at the Sb site provides p-type holes while at the same time increasing the point defects and crystal structure distortion. The presence of the second phase CuSe, which is in situ formed within the Cu3Sb1 − xSnxSe4 matrix, not only improves the electrical conductivity but also increases the phonon scattering on the phase boundaries. As a result, the hybrid structure allows the improvement in TE performance with the highest ZT value of 0.37 at ∼600 K for the samples at x = 0.02–0.03 and y = 0.11–0.09, which is about 42% higher than that of pristine Cu3SbSe4. This work reveals us a new method of improving TE performance, that is, through organizing a hybrid structure in Cu3SbSe4-based composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.