Abstract
HIV-1 can disseminate between susceptible cells by two mechanisms: cell-free infection following fluid-phase diffusion of virions and by highly-efficient direct cell-to-cell transmission at immune cell contacts. The contribution of this hybrid spreading mechanism, which is also a characteristic of some important computer worm outbreaks, to HIV-1 progression in vivo remains unknown. Here we present a new mathematical model that explicitly incorporates the ability of HIV-1 to use hybrid spreading mechanisms and evaluate the consequences for HIV-1 pathogenenesis. The model captures the major phases of the HIV-1 infection course of a cohort of treatment naive patients and also accurately predicts the results of the Short Pulse Anti-Retroviral Therapy at Seroconversion (SPARTAC) trial. Using this model we find that hybrid spreading is critical to seed and establish infection, and that cell-to-cell spread and increased CD4+ T cell activation are important for HIV-1 progression. Notably, the model predicts that cell-to-cell spread becomes increasingly effective as infection progresses and thus may present a considerable treatment barrier. Deriving predictions of various treatments’ influence on HIV-1 progression highlights the importance of earlier intervention and suggests that treatments effectively targeting cell-to-cell HIV-1 spread can delay progression to AIDS. This study suggests that hybrid spreading is a fundamental feature of HIV infection, and provides the mathematical framework incorporating this feature with which to evaluate future therapeutic strategies.
Highlights
We introduce a mathematical model of HIV dynamics that explicitly incorporates hybrid spreading
The course of HIV-1 infection is typified by three phases; acute infection characterized by a rapid viraemia peak (3–6 weeks post-infection) followed by a rapid fall in virus levels, a stable chronic phase of variable length characterized by low level viraemia and slowly declining CD4+ T cell numbers, and a final stage (Acquired Immune Deficiency Syndrome, AIDS) characterized by multiple opportunistic infections and a rapid fall in CD4+ T cell count
The cellular and viral changes which drive each phase of this complex infection have been the subject of intense debate, in which mathematical models have played an important role in delineating HIV-1 pathogenesis and informing antiretroviral therapy [1,2,3]
Summary
The course of HIV-1 infection is typified by three phases; acute infection characterized by a rapid viraemia peak (3–6 weeks post-infection) followed by a rapid fall in virus levels, a stable chronic phase of variable length characterized by low level viraemia and slowly declining CD4+ T cell numbers, and a final stage (Acquired Immune Deficiency Syndrome, AIDS) characterized by multiple opportunistic infections and a rapid fall in CD4+ T cell count. Recent studies incorporate sophisticated models of immune selection [7, 8], as well as the formation of a latent reservoir of quiescent infected cells [9, 10]. We have addressed this and developed a unified model that can explain the complex progress of the infection in all its phases and its variable timescale. Such a unified model is important to understand the HIV-1 infection dynamics, and to estimate the long term effects of therapeutic strategies on HIV-1 progression. Unless otherwise stated, “T cells” refers to CD4+ T cells
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.