Abstract

When constructing an in vitro model of liver tissue to mimic the in vivo liver microenvironment, the major challenge is to preserve and maintain the hepatocyte phenotype. The aim of this study was to develop a novel intelligent hybrid sponge for use in a dense co-culture system designed to simulate the liver microenvironment. We prepared a galactosylated chitosan (GCs)/hyaluronic acid (HA) hybrid sponge using a freeze-drying technique for the co-culture of primary hepatocytes and endothelial cells. Subsequently, we investigated the biocompatibility of the GCs/HA scaffold with primary hepatocytes and endothelial cells in terms of cell attachment, morphology, bioactivity, and maintenance of specific liver functions. The GCs/HA-hybrid sponge demonstrated good biocompatibility not only with primary hepatocytes, but also with endothelial cells. In our model, primary hepatocytes exhibited superior bioactivity and higher levels of liver-specific functions in terms of hepatocyte-specific gene expression, urea production, and testosterone metabolism as compared to a monoculture system. We succeeded in constructing a liver tissue-like model using the GCs/HA-hybrid sponge. Therefore, we anticipate that GCs/HA-hybrid sponges may be a promising matrix for the co-culture of hepatocytes and endothelial cells in liver tissue engineering, and might be employed as a novel co-culture model for applications in toxicology and drug metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.