Abstract
Contemporary off-grid mining operations rely on diesel fuel for the provision of their total energy including electricity, heat, and haulage. Given the high cost of diesel and its imposed greenhouse gas emissions, mining companies are looking for more affordable and cleaner sources of energy for their operations. Although renewable energy systems, such as solar photovoltaic and wind provide efficient solutions to address this challenge, full decarbonization has shown to be very challenging, mainly due to the high cost of battery storage along with the inability to meet total site energy demand. Integrating hydrogen and thermal storage with battery banks can facilitate a full transitioning off diesel. In this sense, the present study intends to offer an innovative decarbonized solution by integrating wind turbines with a multi-storage system (battery, hydrogen, and thermal storage) to supply the total energy (electricity, heat, and haulage) for remote open-pit mines. Among the different proposed fully decarbonized configurations in this study, it is shown that a renewable system with a hydrogen-powered fleet and hybridized battery/hydrogen storage configuration can present the most economically viable case for open-pit mines with a considerably less life-of-mine cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.