Abstract

Recommender systems are software tools and techniques for suggesting items in an automated fashion to users tailored their preferences. Collaborative Filtering (CF) techniques, which attempt to predict what information will meet a user’s needs from the neighborhoods of like-minded people, are becoming increasingly popular as ways to overcome the information overload. The multi-criteria based CF presents a possibility to provide accurate recommendations by considering the user preferences in multiple aspects and several methods have been proposed for improving the accuracy of these systems. However, the problem of multi-criteria recommendations with a single and overall rating is still considered an optimization problem. In addition, increasing the accuracy in predicting the appropriate items tailored to the users’ preferences is on of the main challenges in these systems. Hence, in this research new recommendation methods using Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and Self-Organizing Map (SOM) clustering are proposed to improve predictive accuracy of criteria CF. In this research, SOM enables us to generate high quality clusters of dataset and ANFIS is used for discovering knowledge (fuzzy rules) from users’ ratings in multi-criteria dataset, generating appropriate membership functions (MFs), overall rating prediction and input selection. Using exhaustive search method for input selection, the effective inputs are determined to build the ANFIS models in all generated clusters. Furthermore, new fuzzy-based algorithms, Weighted Fuzzy MC-CF (WFuMC-CF), Fuzzy Euclidean MC-CF (FuEucMC-CF) and Fuzzy Average MC-CF (FuAvgMC-CF), are presented for prediction task in multi-criteria CF. FuEucMC-CF and FuAvgMC-CF algorithms uses the fuzzy-based Euclidian distance and fuzzy-based average similarity, respectively, the WFuMC-CF algorithm uses fuzzy-based user- and item-based prediction in a weighted approach. Experimental results on real-world dataset demonstrate that the proposed hybrid methods remarkably improve the accuracy of multi-criteria CF in relation to the previous methods based on multi-criteria ratings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.