Abstract

To remove CO2 from CH4, tetraethylenepentamine was grafted onto coordinatively unsaturated centers of MIL-101(Cr) by postsynthetic functionalization: wet impregnation at 298 K, followed by grafting, drying, and washing. Compared to MIL-101(Cr), TEPA–MIL-101(Cr) showed 54% higher CO2 adsorption at 1 bar and 98% reduction of CH4 adsorption at 60 bar. The ideal adsorption solution theory (IAST) selectivity of CO2/CH4 for a binary gas mixture of 2% CO2 + 98% CH4 at 298 K and 60 bar predicted by the Toth equation was found to be 11 and 598 for ungrafted and grafted MIL-101(Cr), respectively. Single column breakthrough tests were performed for upgrading the 2% CO2 + 98% CH4 mixture to liquefied quality of natural gas (CO2 < 50 ppm) under various operating conditions including different temperatures and total amount of purge gas at the fixed pressure of 60 bar and temperature of 298 K. At the feed flow rate of 1000 sccm, the TEPA–MIL-101(Cr) extrudates obtained 0.89 mmol/g CO2 adsorption capacity and nearly 83% ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.