Abstract

X-ray diffraction has been widely used to characterize the structural properties (strain and structural quality) of semiconductor heterostructures. This work employs hybrid multiple diffraction to analyzer-oriented Zn1−xMgxO layers grown by molecular beam epitaxy on ZnO substrates. In such a low-symmetry material system, additional features appear in symmetric reflection scans, which are described as arising from hybrid multiple diffraction. First, the Bragg conditions necessary for these high-order processes to occur are introduced and applied to explain all the observed satellite reflections, identify the planes that contribute and computea priorithe angles at which they are observed. Furthermore, thanks to this hybrid multiple-diffraction technique, it is possible to determine the layer lattice parameters (in-plane and out-of-plane) in an easy and accurate way by using one single measurement in standard symmetric conditions. The achieved precision is at least as high as that obtained from the combination of symmetric and asymmetric reciprocal space map measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.