Abstract

An effective and robust hybrid algorithm consisting of particle swarm optimisation (PSO) and limited memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method based on artificial neural network (ANN) is proposed for modelling flexible metal-oxide thin-film transistors (TFTs). The L-BFGS method as an optimiser is exploited to update the parameters of ANN and speed up the training process. A mutation strategy for PSO is derived to enhance the searching ability further. With the great global searching ability, PSO is implemented to find a hopeful initial position in solution space for the next ANN model. The simulation result shows a high accuracy not only in I–V curve fitting but also in small-signal parameter ( g m , g d , etc.) predictions, which have not been exposed in the training process. The measured DC characteristics of In–Zn–O TFTs are used to verify the proposed ANN model, which has the benefits of rapid fitting from the L-BFGS algorithm and universal searching ability from PSO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.