Abstract
The study of genetic regulatory networks has received a major impetus from the recent development of experimental techniques allowing the measurement of patterns of gene expression in a massively parallel way. This experimental progress calls for the development of appropriate computer tools for the modeling and simulation of gene regulation processes. We present a method for the hybrid modeling and simulation of genetic regulatory networks, based on a class of piecewiselinear (PL) differential equations that has been well-studied in mathematical biology. Distinguishing characteristics of the method are that it makes qualitative predictions of the behavior of regulatory systems and that it deals with discontinuities in the right-hand side of the differential equations. The simulation method has been implemented in Java in the computer tool Genetic Network Analyzer (GNA). The method and the tool have been used to analyze several networks of biological interest, including the network underlying the initiation of sporulation in Bacillus subtilis.KeywordsRegulatory DomainQualitative BehaviorTransition GraphSwitching DomainGenetic Regulatory NetworkThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.