Abstract
Aiming at the characteristics of the practical steelmaking process, a hybrid model based on ladle heat status and artificial neural network has been proposed to predict molten steel temperature. The hybrid model could overcome the difficulty of accurate prediction using a single mathematical model, and solve the problem of lacking the consideration of the influence of ladle heat status on the steel temperature in an intelligent model. By using the hybrid model method, forward and backward prediction models for molten steel temperature in steelmaking process are established and are used in a steelmaking plant. The forward model, starting from the end-point of BOF, predicts the temperature in argon-blowing station, starting temperature in LF, end temperature in LF and tundish temperature forwards, with the production process evolving. The backward model, starting from the required tundish temperature, calculates target end temperature in LF, target starting temperature in LF, target temperature in argon-blowing station and target BOF end-point temperature backwards. Actual application results show that the models have better prediction accuracy and are satisfying for the process of practical production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.