Abstract

Semitransparent materials, like silica or alumina, are highly used by high-temperature industries as refractory materials in blast or glass-making furnaces, first for their good mechanical properties. The knowledge of their radiative properties is also essential to improve thermal transfers. However, characterizing experimentally the high temperature dependence of radiative properties of semitransparent ceramic materials remains nowadays a difficult task. This paper reports a hybrid methodology to address this problem. The approach relies on two or more experimental emittance measurements, performed by infrared spectroscopy on samples of increasing thicknesses, and application of emittance models. The efficiency of the method is illustrated by using experimental data obtained on Jargal M samples, an industrial electrofused ceramic, and a virtual media built from X-ray computed tomography images. Two emittance models, a model from the literature and a new model proposed in this work, are selected to be a p...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.