Abstract

This paper presents a hybrid machine learning model for predicting the pullback force in horizontal directional drilling (HDD) construction. The model combines the nondominated sorting genetic algorithm II (NSGA-II) and support vector machine (SVM). NSGA-II is used to optimize two hyperparameters in SVM. Different from other optimization algorithms, NSGA-II is a multi-objective optimizer, which considers prediction accuracy and stability. The proposed model is applied to two practical HDD projects in China. The prediction result is compared with the actual monitoring data, which shows that the mean absolute percentage errors (MAPE) are less than 7%. The primary conclusions are as follows: (1) The proposed model's accuracy and stability are better than those of the two benchmark models; (2) Machine learning models can predict the pullback force more accurately than the empirical model in the construction phase, and the maximum MAPE does not exceed 17%; (3) The running time of the proposed model is short, and it is feasible in practical application. Moreover, this paper discusses the practical application of machine learning models in HDD construction and the future development direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.