Abstract

In this paper, we propose a hybrid image denoising method that combines wavelet transform and deep learning techniques to effectively remove noise from digital images. The wavelet transform is applied to each color channel of the noisy image, decomposing it into different frequency components. The approximation coefficients are then denoised using a convolutional neural network (CNN), specifically designed for this task. The denoised coefficients are subsequently reconstructed to form the final denoised image. Our experimental results demonstrate that this hybrid approach outperforms traditional denoising methods, achieving superior noise reduction while preserving image details. The proposed method is validated using synthetic noisy images, and the results are visually and quantitatively evaluated to confirm its effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.