Abstract
In this study, we propose a hybrid identification algorithm for a class of fuzzy rule-based systems. The rule-based fuzzy modeling concerns structure optimization and parameter identification using the fuzzy inference methods and hybrid structure combined with two methods of optimization theories for nonlinear systems. Two types of inference methods of a fuzzy model concern a simplified and linear type of inference. The proposed hybrid optimal identification algorithm is carried out using a combination of genetic algorithms and an improved complex method. The genetic algorithms determine initial parameters of the membership function of the premise part of the fuzzy rules. In the sequel, the improved complex method (being in essence a powerful auto-tuning algorithm) leads to fine-tuning of the parameters of the respective membership functions. An aggregate performance index with a weighting factor is proposed in order to achieve a balance between performance of the fuzzy model obtained for the training and testing data. Numerical examples are included to evaluate the performance of the proposed model. They are also contrasted with the performance of the fuzzy models existing in the literature. © 2002 John Wiley & Sons, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.