Abstract

We demonstrate high-performance field-effect transistors consisting of hybrid graphene/fluoropolymer films by investigating the molecular interaction with strong carbon–fluorine dipoles and hydrophobic surface characteristics. A simple and reproducible solution-coating method on a chemical vapor deposition grown monolayer graphene was employed with fluoropolymer, amorphous CYTOP, and polycrystalline poly(vinylidene fluoride-co-trifluoroethylene) as an interacting layer. All of the key device metrics, including field-effect mobility, Dirac voltage, residual carrier concentration, ON–OFF current ratio, and electron–hole transport symmetry, were substantially improved. Significantly, the Dirac voltage shifted in both directions toward zero, regardless of its initial positions of the Dirac voltage after molecular encapsulation with fluoropolymers. We also demonstrate the improved stability of hybrid graphene/fluoropolymer films that possesses a hydrophobic surface through repelling hydroxyl (–OH) functional groups from the graphene surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.