Abstract

Heterostructures that integrate conventional semiconductors with ferromagnetic semiconductors and ferromagnetic metals are important for developing a framework for semiconductor spintronics. We describe recent efforts to study ‘hybrid’ ferromagnetic/semiconductor heterostructures that combine conventional III–V and II–VI semiconductors with the ferromagnetic semiconductor (Ga,Mn)As and the ferromagnetic metal MnAs. We focus on the characteristics of two novel classes of heterostructures: (a) (Ga,Mn)As/AlAs/MnAs magnetic tunnel junctions (MTJs) that provide an all-electrical scheme for probing spin injection from metals into GaAs and (b) n-ZnSe/(Ga,Mn)As heterojunction diodes that surprisingly exhibit a magnetically-driven photoconductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.