Abstract
As a base-promoted Kolbe–Schmitt carboxylation reaction, the mechanism of synthesis of salicylic acid derivatives from phenols with CO2 in the industry is still unclear, even up to now. In this paper, synthesis of 3,6-dichloro salicylic acid (3,6-DCSA) from 2,5-dichloro phenoxide and CO2 was investigated in the presence of K2CO3. We show the reaction can proceed by itself, but it goes at a slower rate as well as a lower yield, compared to the case with the addition of K2CO3. However, the yield of 3,6-DCSA is only minorly affected by the size of K2CO3, which cannot be explained from the view of catalytic effect. Therefore, K2CO3 may on one hand act as a catalyst for the activation of CO2 so that the reaction can be accelerated, while on the other hand, it also acts as a co-reactant in deprotonating the phenol formed by the side reaction to phenoxide, which is further converted to salicylate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.