Abstract

Hyaluronic acid (HA) hydrogel was modified with poly(L-lysine) (PLL) and Nogo-66 Receptor antibody (antiNgR) to enhance the repair of central nervous system (CNS) injuries. The immobilization of PLL was characterized by X-ray photoelectron spectroscopy (XPS) and the immobilization of antiNgR was studied by immunofluorescence. The cytocompatibility of this modified hydrogel was analyzed by culturing primary hippocampal neurons. The quantity and morphology of the neurons were influenced by different modifications; the primary hippocampal neurons cultured with modified HA hydrogel exhibited multipolar and bipolar morphology were compared with unmodified hydrogel cultures. The number of neurons obtained by culturing with HA hydrogel modified with both PLL and antiNgR was almost twice the number of neurons cultured with HA modified with only PLL or antiNgR. This phenomenon was attributed to the collaborative effect of PLL and antiNgR on the neurons. The characteristics of this new hydrogel system, including pore structure, water absorption, hydrolysis degradation did not change much when compared with the hydrogel modified with PLL or antiNgR, respectively. It is expected that this modified HA hydrogel has potential as a CNS tissue engineering material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.