Abstract

Chemotherapy is one of conventional treatment methods for breast cancer, but drug toxicity and side effects have severely limited its clinical applications. Photothermal therapy has emerged as a promising method that, upon combination with chemotherapy, can better treat breast cancer. In this context, a biodegradable mesoporous silica nanoparticle (bMSN NPs) system was developed for loading doxorubicin (DOX) and IR780, to be potentially applied in the treatment of breast cancer. IR780 is encapsulated in the pores of bMSN NPs by hydrophobic adsorption, while DOX is adsorbed on the surface of the bMSN NPs by hyaluronic acid electrostatically, to form the bMID NPs. Transmission electron microscopy, fluorescence spectrum and UV absorption spectrum are used to prove the successful encapsulation of IR780 and the loading of DOX. In vitro experiments have shown bMID NPs present an excellent therapeutic effect on breast cancer cells. In vivo fluorescence imaging results have indicated that bMID NPs can accumulate in tumor sites gradually and achieve in vivo long-term circulation and continuous drug release. Furthermore, bMID NPs have provided obvious antitumor effects in breast cancer mouse models, thus evolving as an efficient platform for breast cancer therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.