Abstract

Psoriasis is a deleterious auto-immune disorder which seriously harms the patients physical and mental health. CD44 are found to be over-expressed on psoriatic lesions which are highly responsible for epidermal hyperproliferation and inflammation. Gallic acid (GA), a phenolic acid natural compound has potential inhibitory impact on pro-inflammatory transcription factors. However, the penetration across skin and availability is low when applied topically, making the treatment extremely challenging. Considering such factors, we developed GA loaded chitosan nanoparticles and modified with hyaluronic acid (HA) (HA@CS-GA NP) to assess the therapeutic potential against psoriasis. The formulations were characterized by DSC, zetasizer and TEM for assuring the development of nanosystems. GA loaded CS NP had a particle size of 207.2 ± 0.08 nm while after coating with HA, the size increased to 220.1 ± 0.18 nm. The entrapment efficiency was 93.24 ± 0.132% and drug loading of 73.17 ± 0.23%. The in vitro cell viability assessment study confirmed enhanced anti-proliferative effect of HA@CS-GA NP over plain GA which is due to high sensitivity towards HaCaT cell. The in vivo results on imiquimod induced psoriasis model indicated that CD44 receptor mediated targeted approach of HA@CS-GA NP gel had great potential in restricting the keratinocyte hyperproliferation and circumventing psoriasis. For the therapy of further skin-related conditions, HA modified nanoparticles should be investigated extensively employing genes, antibodies, chemotherapeutics, or natural substances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.