Abstract

The free fatty acid receptor 1 (FFAR1) plays an important role in glucose-stimulated insulin secretion making it an attractive anti-diabetic target. This study characterizes the pharmacological profile of HWL-088 (2-(2-fluoro-4-((2'-methyl-[1,1'- biphenyl]-3-yl)methoxy)phenoxy)acetic acid), a novel highly potent FFAR1 agonist in vitro and in vivo. Moreover, we investigated the long-term effects of HWL-088 alone and in combination with metformin in diabetic mice. In vitro effects of HWL-088 on FFAR1 and PPARα/γ/δ were studied in cell-based assays. Glucose-dependent insulinotropic effects were evaluated in MIN6 cell line and in rats. Long-term effects on glucose and lipid metabolism were investigated in ob/ob mice. HWL-088 is a highly potent FFAR1 agonist (EC50 = 18.9 nM) with moderate PPARδ activity (EC50 = 570.9 nM) and promotes glucose-dependent insulin secretion in vitro and in vivo. Long-term administration of HWL-088 exhibited better glucose control and plasma lipid profiles than those of another FFAR1 agonist, TAK-875, and synergistic improvements were observed when combined with metformin. Moreover, HWL-088 and combination therapy improved β-cell function by up-regulation of pancreas duodenum homeobox-1, reduced fat accumulation in adipose tissue and alleviated fatty liver in ob/ob mice. The effect of HWL-088 involves a reduction in hepatic lipogenesis and oxidative stress, increased lipoprotein lipolysis, glucose uptake, mitochondrial function and fatty acid β-oxidation. These data indicate that long-term treatment with HWL-088, a highly potent FFAR1 agonist, improves glucose and lipid metabolism and may be useful for the treatment of diabetes mellitus by mono-therapy or combination with metformin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.