Abstract

The NASA Scanning Radar Altimeter (SRA) flew aboard one of the NOAA WP-3D hurricane research aircraft to document the sea surface directional wave spectrum in the region between Charleston, South Carolina, and Cape Hatteras, North Carolina, as Hurricane Bonnie was making landfall near Wilmington, North Carolina, on 26 August 1998. Two days earlier, the SRA had documented the hurricane wave field spatial variation in open water when Bonnie was 400 km east of Abaco Island, Bahamas. Bonnie was similar in size during the two flights. The maximum wind speed was lower during the landfall flight (39 m s−1) than it had been during the first flight (46 m s−1). Also, Bonnie was moving faster prior to landfall (9.5 m s−1) than when it was encountered in the open ocean (5 m s−1). The open ocean wave height spatial variation indicated that Hurricane Bonnie would have produced waves of 10 m height on the shore northeast of Wilmington had it not been for the continental shelf. The gradual shoaling distributed the wave energy dissipation process across the shelf so that the wavelength and wave height were reduced gradually as the shore was approached. The wave height 5 km from shore was about 4 m. Despite the dramatic differences in wave height caused by shoaling and the differences in the wind field and forward speed of the hurricane, there was a remarkable agreement in the wave propagation directions for the various wave components on the two days. This suggests that, in spite of its complexity, the directional wave field in the vicinity of a hurricane may be well behaved and lend itself to be modeled by a few parameters, such as the maximum wind speed, the radii of the maximum and gale force winds, and the recent movement of the storm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.