Abstract

The response time of state-of-the-art humidity sensors is ≈8 s. A faster tracking of humidity change is especially required for health care devices. This research is focused on the direct nanostructuring of a humidity-sensitive polymer thin film and it is combined with an optical read-out method. The goal is to improve the response time by changing the surface-to-volume ratio of the thin film and to test a different measurement method compared to state-of-the-art sensors. Large and homogeneous nanostructured areas are fabricated by nanoimprint lithography on poly(2-hydroxyethyl methacrylate) thin films. Those thin films are made by initiated chemical vapor deposition (iCVD). To the author's knowledge, this is the first time nanoimprint lithography is applied on iCVD polymer thin films. With the imprinting process, a diffraction grating is developed in the visible wavelength regime. The optical and physicochemical behavior of the nanostructures is modeled with multi-physic simulations. After successful modeling and fabrication a first proof of concept shows that humidity dependency by using an optical detection of the first diffraction order peak is observable. The response time of the structured thin film results to be at least three times faster compared to commercialsensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.