Abstract

Org anic-inorganic hybrid perovskites have captivated the attention of researchers worldwide due to their remarkable potential for low-cost, high-efficiency solar cells. However, the reliance on controlled environments, such as dry boxes, poses a significant barrier for smaller laboratories wishing to participate in perovskite research. In this study, we investigate the influence of ambient humidity of Cs0.17FA0.83Pb(I0.83Br0.17)3 during the film formation process. Our experiments involved the fabrication of perovskite films using spin-coating techniques under different controlled humidity conditions with identical precursor preparation. The results revealed a significant decrease in film thickness under higher humidity, accompanied by a noticeable alteration in perovskite grain morphology, suggesting a complex interplay between humidity and grain formation. Furthermore, the photovoltaic performance of device with perovskite film formed in different humidity was measured. Surprisingly, despite the challenges posed by high humidity during fabrication, the solar cell efficiency only moderately decreased from 13.17% to 9.55% in average, indicating a remarkable potential of the Cs0.17FA0.83Pb(I0.83Br0.17)3 perovskite formula under adverse ambient conditions. These findings hint at the feasibility of their application in real-world, ambient air conditions, paving the way for their integration into diverse environmental settings, enabling a wider research community to engage in the exciting realm of perovskite solar cell technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.