Abstract

The low temperature formation of crystalline zinc oxide via thermal decomposition of zinc acetylacetonate monohydrate C10H14O4Zn·H2O was studied by humidity controlled thermal analysis. The thermal decomposition was investigated by sample-controlled thermogravimetry (SCTG), thermogravimety combined with evolved gas analysis by mass spectrometry (TG-MS) and simultaneous differential scanning calorimetry and X-ray diffractometry (XRD-DSC). Decomposition of C10H14O4Zn·H2O in dry gas by linear heating began with dehydration around 60°C, followed by sublimation and decomposition above 100°C. SCTG was useful because the high-temperature parallel decompositions were inhibited. The decomposition changed with water vapor in the atmosphere. Formation of ZnO was promoted by increasing water vapor and could be synthesized at temperatures below 100°C. XRD-DSC equipped with a humidity generator revealed that C10H14O4Zn·H2O decomposed directly to the crystalline ZnO by reacting with water vapor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.