Abstract

Nano-bio interface is of great importance in dictating the interaction between the nanomaterials and biological system and thus the toxicity to aquatic organisms. Herein, two specific faceted TiO2 nanocrystals, {101} and {001} facet, were exposed to Daphnia magna to explore facet-dependent toxicological responses in aquatic environment. Due to the different influences on oxidative stress process, the half-maximal effective concentration (EC50) value of {001} TiO2 (1.27 g L-1) to D. magna was less than that of {101} TiO2 (1.68 g L-1). Suwannee river humic acid (SRHA) could significantly reduce the oxidative stress responses of TiO2 nanocrystals and thus alleviate their toxicities to D. magna in aquatic environment. The protective effect of SRHA against TiO2 toxicity exhibited a facet-dependent manner. Compared to {101} TiO2, a more obvious detoxification effect was observed for {001} TiO2. The high SRHA concentration could endow both faceted TiO2 nanocrystals with a similar toxicity due to the formation of SRHA-corona on TiO2 surface. This facet-affected toxicity of nanomaterials in aquatic environment would provide us new insights in predicting the exposure risk of nanomaterials in nature waters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.