Abstract

BackgroundAccumulating evidence has reported the role of microRNA (miR) on diabetic retinopathy (DR). Thus, the aim of the study was to investigate the effect of exosomal miR-17-3p targeting signal transducer and activator of transcription 1 (STAT1) on inflammatory reaction and antioxidant injury of DR mice. MethodsA mouse diabetes model was established and injected with miR-17-3p-containing human umbilical cord mesenchymal stem cells (hucMSCs)-derived exosomes to ascertain the role of exosomal miR-17-3p. The blood glucose, glycosylated hemoglobin (HbAlc), weight, hemoglobin (Hb) content, inflammatory factors, oxidative stress factors, vascular endothelial growth factor (VEGF), apoptosis index and glutamine synthetase (GS) level in serum and/or retinal tissues of DR mice were measured. miR-17-3p and STAT1 expression in retinal tissues as well as the target relationship between miR-17-3p and STAT1 were tested. ResultsmiR-17-3p decreased and STAT1 increased in retinal tissues of DR mice, and STAT1 was the target gene of miR-17-3p. Injection of up-regulated exosomal miR-17-3p reduced the blood glucose and HbAlc, increased the weight, Hb content and GS level, decreased contents of inflammatory factors and VEGF, alleviated oxidative injury, and inhibited retinal cell apoptosis in DR mice through inhibiting STAT1. ConclusionFunctional studies reveal that hucMSCs-derived exosomes shuffle miR-17-3p to ameliorate inflammatory reaction and oxidative injury of DR mice via targeting STAT1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.