Abstract

Abstract Accumulating evidence suggests that T-helper 17 (Th17) cells and regulatory T (Treg) cells may exhibit development plasticity, and that CD4+ Tregs can differentiate into IL-17-producing T cells; however, whether Th17 cells can reciprocally convert into Tregs has not been described. In this study, we generated Th17 clones from tumor-infiltrating T lymphocytes (TILs). We showed that Th17 clones generated from TILs can differentiate into IFN-gamma-producing and FOXP3+ cells after in vitro stimulation with OKT3 and allogeneic peripheral blood mononuclear cells (PBMCs). We further demonstrated that T-cell receptor (TCR) engagement was responsible for this conversion, and that this differentiation was due to the epigenetic modification and reprogramming of gene expression profiles, including lineage-specific transcriptional factor and cytokine genes. In addition to expressing IFN-gamma and FOXP3, we showed that these differentiated Th17 clones mediated potent suppressive function after repetitive stimulation with OKT3, suggesting that these Th17 clones had differentiated into functional Tregs. We further demonstrated that the Th17-derived Tregs, unlike naturally occurring CD4+CD25+ Tregs, did not reconvert back into Th17 cells even under Th17-biasing cytokine conditions. These results provide the critical evidence that human tumor-infiltrating Th17 cells can differentiate into Tregs and indicate a substantial developmental plasticity of Th17 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.