Abstract

Time-resolved single-molecule fluorescence spectroscopy was used to study the human T-cell lymphotropic virus type 1 (HTLV-1) nucleocapsid protein (NC) chaperone activity compared to that of the human immunodeficiency virus type 1 (HIV-1) NC protein. HTLV-1 NC contains two zinc fingers, each having a CCHC binding motif similar to HIV-1 NC. HIV-1 NC is required for recognition and packaging of the viral RNA and is also a nucleic acid chaperone protein that facilitates nucleic acid restructuring during reverse transcription. Because of similarities in structures between the two retroviruses, we have used single-molecule fluorescence energy transfer to investigate the chaperoning activity of the HTLV-1 NC protein. The results indicate that the HTLV-1 NC protein induces structural changes by opening the transactivation response (TAR) DNA hairpin to an even greater extent than HIV-1 NC. However, unlike HIV-1 NC, HTLV-1 NC does not chaperone the strand-transfer reaction involving TAR DNA. These results suggest that, despite its effective destabilization capability, HTLV-1 NC is not as effective at overall chaperone function as is its HIV-1 counterpart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.