Abstract
Xenografting primary human solid tumor tissue into immunodeficient mice is a widely used tool in studies of human cancer biology; however, care must be taken to prove that the tumors obtained recapitulate parent tissue. We xenografted primary human hepatocellular carcinoma (HCC) tumor fragments or bulk tumor cell suspensions into immunodeficient mice. We unexpectedly observed that 11 of 21 xenografts generated from 16 independent patient samples resembled lymphoid neoplasms rather than HCC. Immunohistochemistry and flow cytometry analyses revealed that the lymphoid neoplasms were comprised of cells expressing human CD45 and CD19/20, consistent with human B lymphocytes. In situ hybridization was strongly positive for Epstein-Barr virus (EBV) encoded RNA. Genomic analysis revealed unique monoclonal or oligoclonal immunoglobulin heavy chain gene rearrangements in each B-cell neoplasm. These data demonstrate that the lymphoid neoplasms were EBV-associated human B-cell lymphomas. Analogous to EBV-associated lymphoproliferative disorders in immunocompromised humans, the human lymphomas in these HCC xenografts likely developed from reactivation of latent EBV in intratumoral passenger B lymphocytes following their xenotransplantation into immunodeficient recipient mice. Given the high prevalence of latent EBV infection in humans and the universal presence of B lymphocytes in solid tumors, this potentially confounding process represents an important pitfall of human solid tumor xenografting. This phenomenon can be recognized and avoided by routine phenotyping of primary tumors and xenografts with human leukocyte markers, and provides a compelling biological rationale for exclusion of these cells from human solid tumor xenotransplantation assays.
Highlights
Xenotransplantation of human cancers into immunodeficient mice is very useful for studying human tumor biology [1]
While it is possible to generate xenografts from purified populations of cells from some human cancers [6,7,8,9], many studies describe the implantation of tumor fragments or bulk tumor cell suspensions in mice to maximize the chances of establishing xenografts from limited clinical samples [10,11,12,13]
Reports describing xenografts from human hepatocellular carcinoma (HCC), for example, reveal that only 10–20% of clinical samples yielded viable xenografts when dissociated into cell suspensions that were further fractionated for implantation in mice [14,15]
Summary
Xenotransplantation of human cancers into immunodeficient mice is very useful for studying human tumor biology [1]. While it is possible to generate xenografts from purified populations of cells from some human cancers [6,7,8,9], many studies describe the implantation of tumor fragments or bulk tumor cell suspensions in mice to maximize the chances of establishing xenografts from limited clinical samples [10,11,12,13].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.