Abstract

Nanomedicines have emerged as a potential strategy to reduce the toxic effect of drugs administered via conventional approaches. Nanomedicines undergo passive and active targeting of the tumor tissues, thereby causing localized drug delivery and reducing drug demand and side effects. Here, we prepared reduction-sensitive oxaliplatin-conjugated human serum albumin nanoparticles with a small size, uniform surfaces, and a satisfactory encapsulation coefficient. The findings of cellular studies demonstrate that utilizing human serum albumin is effective for active tumor targeting. The presence of glutathione-sensitive disulfide linkers in the crosslinking agent and between Pt(IV) and HSA provided dual reduction sensitivity. Cytotoxicity and cell death were enhanced compared to free Oxaliplatin. The outcomes demonstrate that the approach maximized Oxaliplatin's ability to control tumor growth, induced apoptosis, and reduced drug resistance. Therefore, for the first time, our results imply that OXA-SS-HSA NPs were biocompatible, smart, and effective anticancer nanomedicine for triple-negative breast cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.