Abstract

Human personality assessment using gait pattern recognition is one of the most recent and exciting research domains. Gait is a person’s identity that can reflect reliable information about his mood, emotions, and substantial personality traits under scrutiny. This research focuses on recognizing key personality traits, including neuroticism, extraversion, openness to experience, agreeableness, and conscientiousness, in line with the big-five model of personality. We inferred personality traits based on the gait pattern recognition of individuals utilizing built-in smartphone sensors. For experimentation, we collected a novel dataset of 22 participants using an android application and further segmented it into six data chunks for a critical evaluation. After data pre-processing, we extracted selected features from each data segment and then applied four multiclass machine learning algorithms for training and classifying the dataset corresponding to the users’ Big-Five Personality Traits Profiles (BFPT). Experimental results and performance evaluation of the classifiers revealed the efficacy of the proposed scheme for all big-five traits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.