Abstract

Human osteoarthritic (OA) cartilage type-II collagen is preferentially cleaved by the proinflammatory cytokine-induced matrix metalloproteinases-13 (MMP-13). Interferon-gamma (IFN-gamma) potently inhibits interleukin-1 (IL-1)-induced MMP-13 expression in healthy chondrocytes. Our goal was to study the previously unknown impact of IFN-gamma on MMP-13 in OA and compare the levels and functional activity of IFN-gamma receptor (IFN-gammaR1) in healthy and OA chondrocytes. Chondrocytes were obtained from OA patients and non-arthritic control subjects and treated with IL-1+ or- IFN-gamma. MMP-13 mRNA and protein expression were measured by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. IFN-gammaR1 expression was assessed by flow cytometry, immunoprecipitation and immunohistochemistry with fluorescein-labeled antibody. IFN-gammaR1 was neutralized with its antibody and signal transducer and activator of transcription 1 (STAT1) phosphorylation analyzed by Western blotting. OA chondrocytes were also transfected with control and IFN-gammaR1 expression vectors. OA chondrocytes displayed a drastically impaired MMP-13 suppression by IFN-gamma compared to control cells. IFN-gammaR1 levels were significantly decreased in OA chondrocytes as assessed by flow cytometry, immunoprecipitation and immunohistochemistry. Consequently, IFN-gamma-stimulated STAT1 phosphorylation mediated by IFN-gammaR1 was also considerably reduced in OA patient chondrocytes. IFN-gammaR1 overexpression in OA cells restored MMP-13 suppression by IFN-gamma. Ability of IFN-gamma to suppress IL-1-induced MMP-13 expression is diminished in OA chondrocytes due to decreased IFN-gammaR1 levels, activity and impaired downstream signal transduction. Therefore, IFN-gammaR1 modulation and weakened endogenous IFN-gamma response may be important mechanisms in OA pathogenesis and cartilage degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.