Abstract

This paper tests the generality and implications of an ’’encoding-error‘‘ model (Fujita et al. 1993) of humans‘ ability to keep track of their position in space in the absence of visual cues (i.e., by nonvisual path integration). The model proposes that when people undergo nonvisually guided travel, they encode the distances and turns that they experience, and their errors reflect systematic inaccuracies in the encoding process. Thus when people try to return to the origin of travel, they base their response on mis-encoded values of the outbound distances and turns. The two experiments reported here addressed three issues related to the model: (i) whether path integration is context-dependent and if so, how rapidly it adapts to recently experienced distances and turns; (ii) whether effects of experience can be specifically attributed to changes in the encoding process, and if so, what changes; and (iii) whether the encoding process represents distances and turns in the individual paths without considering their spatial relationship to one another (i.e., an object-centered representation). Testing these issues allows us to evaluate and develop the model. Subjects who were blindfolded or had restricted vision were led through two legs of a triangle and the turn between, then tried to return to the origin. Paths varied in whether experienced legs and turns were small or large (Experiment 1) and in variability of return and outbound course (Experiment 2). Response turn, distance and course were determined. The assumption of immutable encoding functions was not supported; encoding processes were context dependent, although they did not adapt within a block of trials. Although effects of experience could be accounted for by the model, the affected parameters were not always as predicted, and in some cases additional parameters were necessary. Results of manipulating variability in return course were consistent with the model‘s assumption of object-centered representation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.