Abstract
Few data are available regarding the role of human skin dendritic cells (DCs) in driving T-cell responses. In this study we analyzed the relative capacity of Langerhans cells (LCs) and dermal CD14(-)CD1c(+) DCs (DDCs) to trigger naive CD4(+) T-cell proliferation and differentiation. DC subsets were purified after a 2-day migration from epidermis and dermis of the same skin sample. Migratory LCs showed far more activated phenotype than CD1c(+)DDCs and distinct expression of new molecules of the B7 family; when compared with LCs, CD1c(+)DDCs showed higher PD-L1 and lower inducible co-stimulator ligand (ICOS-L) expression. As expected, CD1c(+)DDCs showed lower allostimulatory property than LCs, a process that was partly reversed by anti-PD-L1 mAb. LCs were significantly more efficient than CD1c(+)DDCs at inducing allogeneic naive CD4(+) T cells to secrete both T helper cell 1 (Th1; IFN-gamma and tumor necrosis factor-alpha ) and Th2 (IL-4 and IL-5) cytokines. Moreover, anti-PD-L1 mAb increased the production of IFN-gamma by both LC- and CD1c(+)DDC-stimulated T cells. Globally, these results argue for a preponderant role of human LCs in inducing naive CD4(+) T-cell priming. Low expression of co-stimulatory molecules together with high expression of PD-L1 might limit the efficiency of CD1c(+)DDCs at inducing naive CD4(+) T-cell proliferation and secretion of cytokines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.