Abstract

In the early stages of wound healing, keratinocytes become “activated” and release inflammatory molecules such as interleukin-1 and interleukin-8 that are linked to innate immune responses and neutrophil recruitment. It is unclear, however, whether keratinocytes release molecules linked to adaptive immune responses, e.g. CCL20, in their early state of activation without signals from infiltrating T cells. This study aims to isolate the immediate alterations in protective and inflammatory gene expression that occur in epidermal keratinocytes, with a particular focus on molecules associated with cell-mediated immunity. We used dispase-separated epidermis, followed by intercellular disassociation by trypsinization, as a model for epidermal injury. We obtained a pure population of keratinocytes using flow cytometry. As a control for uninjured epidermis, we performed laser capture microdissection on normal human skin. Sorted keratinocytes had an early burst of upregulated gene expression, which included CCL20, IL-15, IL-23A, IFN-κ, and several antimicrobial peptides. Our results provide insight into the potential role of keratinocytes as contributors to cell-mediated inflammation, and expand knowledge about gene modulation that occurs during early wound healing. Our findings may be relevant to cutaneous diseases such as psoriasis, where micro-injury can trigger the formation of psoriatic plaques at the site of trauma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.