Abstract

Industrialized diets that incorporate processed foods and are often high in simple sugars and fats and low in fiber have myriad health impacts, many of which may operate via impacts on the gut microbiota. Examining how these diets affect the gut microbiota can be challenging given that lab animal models experience altered environmental contexts, and human studies include a suite of co-varying cultural and environmental factors that are likely to shape the gut microbiota alongside diet. To complement these approaches, we compare the microbiomes of wild populations of olive baboons (Papio anubis) with differential access to human trash high in processed foods, simple sugars, and fats in Rwanda’s Akagera National Park. Baboons are a good model system since their microbiomes are compositionally similar to those of humans. Additionally, this population inhabits a common environment with different social groups consuming qualitatively different amounts of human trash, limiting variation in non-dietary factors. Using 16S rRNA gene amplicon sequencing we find that baboons with unlimited access to human trash have reduced microbial alpha diversity and reduced relative abundances of fiber-degrading taxa such as Ruminococcaceae, Prevotellaceae, and Lachnospiraceae. In contrast, baboons with limited access to human trash have a microbiome more similar to that of baboons with no access to human trash. Our results suggest that while a human-influenced diet high in processed foods, simple sugars, and fats is sufficient to alter the microbiome in wild baboons, there is a minimum threshold of dietary alteration that must occur before the microbiome is substantially altered. We recommend that data from wild primate populations such as these be used to complement ongoing research on diet-microbiome-health interactions in humans and lab animal models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.