Abstract
The human immunodeficiency virus type 1 (HIV-1) Gag polyprotein is sufficient for assembly and release of virion-like particles from the plasma membrane. To promote assembly, the Gag polyprotein must polymerize to form a shell that lines the inner membrane of nascent virions. Several techniques have been used to functionally map the domain required for Gag polymerization (the I domain). Among these methods, isopycnic centrifugation has been used under the assumption that changes in virion density reflect impairment in Gag-Gag interaction. If virion density is determined by efficient Gag-Gag interaction, then mutation of basic residues in the nucleocapsid (NC) domain should disrupt virion density, since these residues constitute the I domain. However, we have previously shown that simultaneous disruption of up to 10 HIV-1 NC basic residues has no obvious effect on virion density. To rule out the possibility that HIV-1 NC basic residues other than those previously mutated might be important for virion density, mutations were introduced at the remaining sites and the ability of these mutations to affect Gag-Gag interaction and virion density was analyzed. Included in our analysis is a mutant in which all NC basic residues are replaced with alanine. Our results show that disruption of HIV-1 NC basic residues has an enormous effect on Gag-Gag interaction but only a minimal effect on the density of those virions that are still produced. Therefore, the determinants of the I domain and of virion density are genetically distinguishable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.