Abstract

Human activity recognition is an application of machine learning with the aim of identifying activities from the gathered activity raw data acquired by different sensors. In medicine, human gait is commonly analyzed by doctors to detect abnormalities and determine possible treatments for the patient. Monitoring the patient's activity is paramount in evaluating the treatment's evolution. This type of classification is still not enough precise, which may lead to unfavorable reactions and responses. A novel methodology that reduces the complexity of extracting features from multimodal sensors is proposed to improve human activity classification based on accelerometer data. A sliding window technique is used to demarcate the first dominant spectral amplitude, decreasing dimensionality and improving feature extraction. In this work, we compared several state-of-art machine learning classifiers evaluated on the HuGaDB dataset and validated on our dataset. Several configurations to reduce features and training time were analyzed using multimodal sensors: all-axis spectrum, single-axis spectrum, and sensor reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.