Abstract

Ridges are often added to surfaces to improve grip of objects such as sports equipment, kitchen utensils, assistive technology, etc. Although considerable work has been carried out to study finger friction generally, not much attention has been paid to understanding and modelling the effects of surface texture. Previous studies indicate that at low roughness values friction decreases as roughness increases, but then a sharp increase is seen after a threshold level of roughness is reached. This is thought to be due to interlocking. In this study an analytical model was developed to analyse the different mechanisms of friction of a fingerpad sliding against triangular-ridged surfaces that incorporated adhesion, interlocking and hysteresis. Modelling was compared with experimental results from tests on five different triangular-ridged surfaces, manufactured from aluminium, brass and steel. Model and experiment compared well. The study showed that at low ridge height and width the friction was dominated by adhesion. However, above a ridge height of 42.5 μm, interlocking friction starts to contribute greatly to the overall friction. Then at a height of 250 μm, a noticeable contribution from hysteresis, of up to 20% of the total friction, is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.