Abstract

We established high density primary cultures of neural cells from dissociated second trimester human fetal brains using a novel spin seeding method. Under our culture conditions, the majority of the cells exhibited neuronal phenotypes as evidenced by morphological criteria, immunoreactivity to the 66 kDa neurofilament protein and expression of TTX-sensitive Na+ channels and cell excitability. These cultures were enriched in glutamic acid decarboxylase (GAD), the synthetic enzyme of the neurotransmitter GABA, and responded with Ca2+ influx to acute application of glutamate. Interestingly, the human fetal neurons in culture did not express either dopaminergic or cholinergic phenotypes. In addition, the population of neurons obtained express a high incidence of gap junction-mediated intercellular communication. These studies provide evidence that functional neuronal properties arise early during prenatal development in humans and offer the potential to evaluate pharmacological agents on primary human neurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.