Abstract

Polycyclic aromatic hydrocarbons (PAHs) are major carcinogenic environmental contaminants known to exert bone marrow toxicity and to induce leukemias, suggesting that these chemicals target hematopoietic stem cells. To investigate this hypothesis, we studied the effects of PAHs on cell proliferation and differentiation in human hematopoietic CD34+ cell cultures. Benzo(a)pyrene (BP), a prototypical PAH, was shown to markedly impair CD34+ cell expansion and to inhibit CD34+ cell differentiation into various hematological cell lineages, including erythroid, granulomacrophagic, and megakaryocytic lineages. This was associated with the induction of a caspase- and mitochondrion-related apoptosis process. CD34+ progenitor cells were found to exhibit functional expression of the aryl hydrocarbon receptor (AhR), and the use of the pure AhR antagonist 3'-methoxy-4'-nitroflavone partially counteracted the deleterious effects of BP in CD34+ cell cultures, underlining the involvement of AhR in BP toxicity. Additional events such as CYP1A1/1B1-dependent PAH metabolism and adduct formation were also required since 1) 2,3,7,8-tetrachlorodibenzo-p-dioxin, a very potent ligand of the AhR that is poorly metabolized and therefore does not generate reactive metabolites in contrast to PAHs, failed to affect CD34+ cell expansion; 2) the CYP1A1/1B1 inhibitor alpha-naphthoflavone blocked both BP adduct formation and BP toxicity; and 3) benzo(a)pyrene-trans-7,8-dihydrodiol-9,10-epoxide, a highly reactive BP metabolite, exerted a marked toxicity toward CD34+ cell cultures. Overall, these data indicate that human hematopoietic CD34+ cells can bioactivate chemical carcinogens such as PAHs and, in this way, constitute targets for such carcinogenic environmental contaminants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.